skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ricketts, JW"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Deep-time thermochronology by the zircon (U-Th)/He (ZHe) method is an emerging field of study with promise for constraining Precambrian rock thermal and exhumation histories. The Grand Canyon provides an opportunity to further explore this method because excellent geologic constraints can be integrated with multiple thermochronometers to address important questions about the spatial variability of basement erosion below the sub-Cambrian Great Unconformity composite erosional surface. In this study, we synthesize new ZHe results (n = 26) and published (n = 77) ZHe data with new K-feldspar 40Ar/39Ar data and models (n = 4) from Precambrian basement rocks of the Grand Canyon, USA. We use HeFTy and QTQt thermal history modeling to evaluate the ability of the individual ZHe and K-feldspar 40Ar/39Ar thermochronometric data sets to resolve Precambrian thermal histories and compare those results with jointly modeled data using the QTQt software. We also compare Precambrian basement thermal histories of the eastern and western Grand Canyon, where the eastern Grand Canyon has ∼4 km of Grand Canyon Supergroup strata deposited and preserved, and the western Grand Canyon, where the Supergroup was either never deposited or not preserved. In all locations, models constrained only by ZHe data have limited resolving power for the past ∼600 m.y., compared to models that combine K-feldspar 40Ar/39Ar and ZHe data, which extends the recorded history into the Mesoproterozoic. Our model results suggest that two regional basement unroofing events occurred. A ca. 1350−1250 Ma cooling event is interpreted to record basement exhumation from depths of ∼10 km, and a second cooling episode (∼200−100 °C total) records exhumation from a depth of ∼3 km to 7 km to near-surface conditions between ca. 600 Ma and 500 Ma. Easternmost Grand Canyon models suggest that the preserved maximum ∼4 km thickness of the Grand Canyon Supergroup (with burial heating at ∼100 °C) approximates the total original Mesoproterozoic and Neoproterozoic stratal thickness. Whether these Supergroup rocks were present and then eroded in the western Grand Canyon, as suggested by regional geologic studies, or were never deposited is not constrained by thermochronological data. 
    more » « less